Solving Linear Differential Equations of First Order
For the diffe...
Question
For the differential equation x2y−x2dydx=y4cosx, the solution is 1y3e3x=∫kcosxe3xx2dx+c, find k=
Open in App
Solution
x2y−x2dydx=y4cosx⇒−1y4dydx+1y3=cosxx2 Put 1y3=v⇒−3y4dy=dv ∴dvdx+3v=cosxx2 ...(1) Here P=3⇒∫Pdx=∫3dx=3x ∴I.F.=e3x Multiplying (1) by I.F. we get e3xdvdx+3e3xv=3cosxe3xx2 Integrating both sides we get ve3x=∫3cosxe3xx2dx+c⇒1y3e3x=∫kcosxe3xx2dx+c ∴k=3