Given differential equation is
dydx=1−cos x1+cos x
using 1+cos x
=2cos2x2 and 1−cos x=2 sin2x2
dydx=2sin2x22cos2x2
dy=tan2x2dx
Putting
tan2x2=sec2x2−1
then we get,
dy=(sec2x2−1)dx
Integrating both sides
We get,
∫ dy=∫(sec2x2−1)dx
y=112tanx2−x+c
y=2tanx2−x+c
Final Answer:
Hence, the required general solution is
y=2tanx2−x+c