Given differential equation is
dydx=sin−1x
dy=sin−1xdx
Integrating both sides
We get,
∫dy=∫1.sin−1xdx
Using Integrating by parts:
∫ f(x)g(x)dx=f(x)∫ g(x)dx−∫[f′(x)∫g(x)dx]dx
Take f(x)=sin−1x and g(x)=1
Putting (a) in (i) then we get,
y=x.sin−1x−∫−du2√u
y=x.sin−1x+12∫−1u2dt
y=x.sin−1x+12u−12+1−12+1+c
y=x.sin−1x+√u+c
Now, putting the value of u=1−x2 then we get,
y=xsin−1x+√1−x2+c
Final Answer:
Hence, the required general solution is
y=xsin−1x+√1−x2+c