Finding General solution
Given differential equation is
x5dydx=−y5
dyy5=−dxx5
Integrating both sides
We get,
∫dyy5=∫−dxx5
y−5+1−5+1=−x−5+1−5+1+c
−y−44=x−44+c
x−4+y−4+4c=0
taking 4c=k
x−4+y−4+K=0
Final Answer:
Hence, the required general solution is
x−4+y−4+K=0