For the differential equation given in the question find a particular solution satisfying the given condition.
dydx−3y cotx=sin2x, where y=2 and x=π2
Given, dydx−3y cotx=sin2x
On comparing with the form dydx+Py=Q, we get
P=-3cotx, Q=sin 2x
IF=e−3∫cotxdx=e−3log|sinx|=elog|sinx|−3⇒IF=1sin3x ...(i)
The general solution of the given differential equation is given by
y×IF=∫Q×IFdx+C⇒y×1sin3x=∫1sin3x sin2x dx⇒y×1sin3x=2∫sinx cosxsin3x dx+C⇒1sin3x×y=2∫cosxsin2xdx+C⇒ysin3x=2∫cotx cosecx dx+C⇒ysin3x=−2cosecx+C⇒y=−2(1sinx×sin3x)+Csin3x⇒y=−2sin2x+Csin3x ...(iii)
Given, y=2 and x=π2, then from Eq. (ii), we get
On 2=−2sin2(π2)+Csin3(π2)⇒2=−2+C⇒C=4
On putting the value of C in Eq. (ii), we get
y=−2sin2x+4sin3x⇒y=4sin3x−2sin2x