wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For the differential equation given in the question find a particular solution satisfying the given condition.

dydx3y cotx=sin2x, where y=2 and x=π2

Open in App
Solution

Given, dydx3y cotx=sin2x
On comparing with the form dydx+Py=Q, we get
P=-3cotx, Q=sin 2x
IF=e3cotxdx=e3log|sinx|=elog|sinx|3IF=1sin3x ...(i)
The general solution of the given differential equation is given by
y×IF=Q×IFdx+Cy×1sin3x=1sin3x sin2x dxy×1sin3x=2sinx cosxsin3x dx+C1sin3x×y=2cosxsin2xdx+Cysin3x=2cotx cosecx dx+Cysin3x=2cosecx+Cy=2(1sinx×sin3x)+Csin3xy=2sin2x+Csin3x ...(iii)
Given, y=2 and x=π2, then from Eq. (ii), we get
On 2=2sin2(π2)+Csin3(π2)2=2+CC=4
On putting the value of C in Eq. (ii), we get
y=2sin2x+4sin3xy=4sin3x2sin2x


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Order of a Differential Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon