For the differential equation given in the question find a particular solution satisfying the given condition.
dydx+2y tanx=sinx, y=0 when x=π3.
Given, dydx+2y tanx=sinx
On comparing with the form dydx+Py+Q, we get
P=2tanx,Q=sinx∴IF=e2∫tanxdx=e2log|secx|⇒IF=sec2x
The general solution is given by
y.IF=∫Q×IFdx+C ...(i)
⇒ysec2x=∫(sinx.sec2x)dx)+C⇒ysec2x=∫sinx.1cos2xdx+C⇒ysec2x=∫tanx secxdx+C⇒ysec2x=secx+C ...(ii)
Put, y=0 and x=π3 in Eq. (ii), we get
0×sec2π3=secpi3+C⇒0=2+C⇒C=−2
On putting the value of C in Eq. (ii), we get
ysec2x=secx−2⇒y=cosx−2cos2x
Hence, the required solution of the given differential equation is y=cosx−2cos2x.