For the differential equation in given question find a particular solution satisfying the given condition.
cos(dydx)=a(aϵR), y=2 when x=0.
Given,
cos(dydx)=a⇒dydx=cos−1a
On separating the variables, we get dy=(cos−1a)dx
On integrating both sides, we get ∫dy=cos−1a∫dx⇒y=cos−1a(x)+C ...(i)
On putting y=2 and x=0, we get 2=(cos−1(a))(0)+C⇒C=2
On substituting C=2 in Eq. (i), we get
y=xcos−1a+2⇒y−2xcos−1a⇒cos(y−2x)=a
which is the required particular solution.