For the differential equation in given question find a particular solution satisfying the given condition.
(x3+x2+x+1)dydx=2x2+x, y=1 when x=0.
Given, (x3+x2+x+1)dydx=2x2+x
On separating the variables, we get dy=2x2+x(x2+x2+x+1)dx
On integarting both sides, we get
∫dy=2x2+x(x3+x2+x+1)dx⇒∫dy=∫2x2+xx2(x+1)+1(x+1)dx⇒∫dy=∫2x2+x(x+1)(x2+1)=A(x+1)+Bx+C(x2+1) [by partial fraction]....(i)⇒2x2+x(x+1)(x2+1)=A(x2+1)+(Bx+C)(x+1)(x+1)(x2+1)⇒2x2+x=Ax2+A+Bx2+Bx+Cx+C⇒2x2+x=x2(A+B)+x(B+C)+(A+C)
On comparing the coefficients of x2,x and constant terms on both sides,
we get
A+B=2, B+C=1 and A+C=0
On solving these equations, we gte A=12,b=32 and C=−12
On substituting the values of A, B and C in Eq. (ii), we get
2x2+x(x+1)(x2+1)=12(x+1)+32x−12x2+1
∴∫2x2+x(x2+1)(x+1)dx=12∫1(x+1)dx+∫32x−12(x2+1)dx
Then from Eq.(i), we get
y=12log|x+1|+32∫x(x2+1)dx−12∫1(x2+1)dx⇒y=12log|x+1|+32∫x(x2+1)dx−12tan−1xLet x2+1=t⇒2x=dtdx=dx=dt2x∴y=12log|x+1|+32∫xtdt2x−12tan−1x⇒y=12log|x+1|+34∫1tdt−12tan−1x
⇒y=12log|x+1|+34log|t|−12tan−1x+C⇒y=12log|x+1|+34log|x2+1|−12tan−1x+C⇒y=14[2 log |x+1|+3 log |x2+1|]−12tan−1x+C
⇒y=14[log((x+1)2(x2+1)3)]−12tan−1x+C ..... (iii)
[∵log mn=n log m]
When x=0, then y = 1 on putting these values in Eq. (iii), we get
1=14log (1)−12tan−1(0)+C⇒1=14×0−12×0+C⇒C=1
On putting C = 1 in Eq. (iii), we get
y=14[log((x+1)2(x2+1)3)]−12tan−1x+1
which is the required particular solution.