wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For the differential equation in given question find a particular solution satisfying the given condition.

(x3+x2+x+1)dydx=2x2+x, y=1 when x=0.

Open in App
Solution

Given, (x3+x2+x+1)dydx=2x2+x
On separating the variables, we get dy=2x2+x(x2+x2+x+1)dx
On integarting both sides, we get
dy=2x2+x(x3+x2+x+1)dxdy=2x2+xx2(x+1)+1(x+1)dxdy=2x2+x(x+1)(x2+1)=A(x+1)+Bx+C(x2+1) [by partial fraction]....(i)2x2+x(x+1)(x2+1)=A(x2+1)+(Bx+C)(x+1)(x+1)(x2+1)2x2+x=Ax2+A+Bx2+Bx+Cx+C2x2+x=x2(A+B)+x(B+C)+(A+C)
On comparing the coefficients of x2,x and constant terms on both sides,
we get
A+B=2, B+C=1 and A+C=0
On solving these equations, we gte A=12,b=32 and C=12
On substituting the values of A, B and C in Eq. (ii), we get
2x2+x(x+1)(x2+1)=12(x+1)+32x12x2+1
2x2+x(x2+1)(x+1)dx=121(x+1)dx+32x12(x2+1)dx
Then from Eq.(i), we get
y=12log|x+1|+32x(x2+1)dx121(x2+1)dxy=12log|x+1|+32x(x2+1)dx12tan1xLet x2+1=t2x=dtdx=dx=dt2xy=12log|x+1|+32xtdt2x12tan1xy=12log|x+1|+341tdt12tan1x

y=12log|x+1|+34log|t|12tan1x+Cy=12log|x+1|+34log|x2+1|12tan1x+Cy=14[2 log |x+1|+3 log |x2+1|]12tan1x+C
y=14[log((x+1)2(x2+1)3)]12tan1x+C ..... (iii)
[log mn=n log m]
When x=0, then y = 1 on putting these values in Eq. (iii), we get
1=14log (1)12tan1(0)+C1=14×012×0+CC=1
On putting C = 1 in Eq. (iii), we get
y=14[log((x+1)2(x2+1)3)]12tan1x+1
which is the required particular solution.


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon