For the differential equation in given question find the general solution.
(ex+e−x)dy−(ex−e−x)dx=0
Given, (ex+e−x)dy−(ex−e−x)dx=0⇒(ex+e−x)dy=(ex−e−x)dx=0
On separating the variables, we get dy=(ex−e−xex+e−x)dx
On integrating, we get,
∫dy=∫(ex−e−xex+e−x)dxLet ex+e−x=t⇒ex−e−x=dtdx⇒dx=dtex−e−x∴∫dy=∫ex−e−xtdtex−e−x=∫1tdt⇒y=log|t|+C⇒y=log|ex+e−x|+C
which is the required general solution.