For the differential equation in given question find the general solution.
extan ydx+(1−ex)sec2ydy=0
Given, extan ydx+(1−ex)sec2ydy=0
On separating the varibales , we get extan ydx=−(1−ex)sec2ydy
⇒ex(ex−1)dx=∫sec2ytanydyLet ex−1=t⇒ex=dtdx⇒dx=dtex and tany=v⇒sec2y=dvdy⇒dy=dvsec2y∴∫extdtex=∫sec2yvdvsec2y⇒log|t|=log|v|−log|C|⇒log|ex−1|=log|tany|−log|C|⇒log|C(ex−1)|=log|tany| [∵logm+logn=logmn]⇒C(ex−1)=tanY (∵logm=logn⇒m=n)
which is the required general solution.