wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For the differential equation in given question find the general solution.​​​​

extan ydx+(1ex)sec2ydy=0

Open in App
Solution

Given, extan ydx+(1ex)sec2ydy=0
On separating the varibales , we get extan ydx=(1ex)sec2ydy
ex(ex1)dx=sec2ytanydyLet ex1=tex=dtdxdx=dtex and tany=vsec2y=dvdydy=dvsec2yextdtex=sec2yvdvsec2ylog|t|=log|v|log|C|log|ex1|=log|tany|log|C|log|C(ex1)|=log|tany| [logm+logn=logmn]C(ex1)=tanY (logm=lognm=n)
which is the required general solution.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon