For the differential equation in given question find the general solution.
dydx=sin−1x
Given, dydx=sin−1x
On separating the variables, we get dy=sin−1xdx
On integrating , we get ∫dy=∫sin−1xdx
y=sin−1x∫1dx−∫[ddx(sin−1x)∫1dx]dx (using integration by parts)
⇒y=xsin−1x−∫[x√1−x2]dxLet 1−x2=t⇒−2x=dtdx=dx=dt−2x∴y=sin−1x+∫x√tdt2x⇒y=xsin−1x+12.t−1/2+1−1/2+1+C⇒y=xsin−1x+22√t+C⇒y=xsin−1x+√1−x2+C
which is the required general solution.