For the differential equation in given question find the general solution.
dydx=√4−y2
Given, dydx=√4−y2
On separating the variables, we get dx=dy√4−y2
On integrating, we get
∫dy√22−y2=∫dx⇒sin−1y2=x+C (∵∫1√a2−x2dx=sin−1xa)
⇒y2=sin(x+C)⇒y=2sin(x+C) which is the required general solution.