For the differential equation in given question find the general solution.
x5dydx=−y5
Given, x5dydx=−y5
On separating the variables, we get dyy5=−dxx5On integrating,we get∫dyy5=−∫dxx5⇒y−5dy=−∫x−5dx
\Rightarrow y−5+1(−5+1)=−x−5+1(−5+1)+C (∵∫xndx=xn+1n+1)
(\Rightarrow y−4(−4)=−x−4(−4)+C \Rightarrow x−4+y−4=−4C
\Rightarrow x−4+y−4=A[where,A=−4C]
which is the required general solution.