For the differential equation in given question find the general solution.
ylogydx−xdy=0
Given, y logy dx−x dy=0
On separating the variables, we get y~ log y~ dx=x dy ⇒1xdx=1y logydy
On integrating, we get ∫1xdx=∫1ylogydyLet logy=t⇒1y=dtdy⇒⇒dy=ydt∴∫1ydx=∫1tdt⇒log|y|=log|t|−log|C|⇒log|xC|=log|logy| [∵logm+logn=log mn and logm=logn⇒m=n]⇒Cx=logy⇒y=eCx [∵Logex=m⇒em=x]
which is the required general solution.