Given : xydydx=(x+2)(y+2)
ydyy+2=x+2xdx
Integrating both sides, we get
∫yy+2dy=∫x+2xdx
∫y+2−2y+2dy=∫(1+2x)dx
∫(1+2y+2dy)=∫(1+2x)dx
y−2log(y+2)=x+2log|x|+c ...(i)
Given: Curve passes through (1,−1)
Substituting x=1,y=−1 in (i),
−1−2log(−1+2)=1+2log1+c
−1=1+c
c=−2
Substituting c=−2 in (i),
y=2log(y+2)+x+2logx−2
y−x+2=log(y+2)2+logx2
∵logbn=nlogb
y−x+2=log(x2(y+22))
∵loga+logb=logab,a>0,b>0
Hence, required equation pof the curve is y−x+2=log(x2(y+2)2)