For the ellipse 25x2+9y2-150x-90y+225=0, the eccentricity is equal to
25
35
1524
45
Explanation for the correct option:
Equation for an ellipse:
(x-h)2a2+(y-k)2b2=1...(A)
Eccentricity of an ellipse.
⇒25x2+9y2-150x-90y+225=0⇒25(x2-6x)+9(y2-10y)+225=0⇒25(x2-6x+9)+9(y2-10y+25)=225(x-3)29+(y-5)225=1...(B)Compareeqn(A) & (B)Here,a=3,b=5Now,e=1-a2b2e=1-925e=45
Hence, the correct option is (D)
Find the eccentricity, coordinates of foci, length of the latus-rectum of the following ellipse: (i)4x2+9y2=1 (ii)5x2+4y2=1 (iii)4x2+3y2=1 (iv)25x2+16y2=1600 (v)9x2+25y2=225
Foci of the Ellipse 25x2+9y2−150x−90y+225 = 0 are