The correct options are
A exactly two values of x exists
B y=−1+nπ+π4,nϵZ
The given equation can be written as
⇒3−2x−x2=1+tan2(x+y)+1+cot2(x+y)⇒4−(x+1)2=sec2(x+y)+csc2(x+y)⇒sin2(x+y)cos2(x+y){4−(x+1)2}=1
⇒sin2(2x+2y){4−(x+1)2}=4 ...(1)
Since sin2(2x+2y)≤1 and {4−(x+1)2}≤4
Therefore (1) holds only when sin2(2x+2y)=1 ...(2)
and {4−(x+1)2}=4 ...(3)
From (3), we get x=−1
Putting this in (2), we get sin(2y−2)=±1
⇒2y−2=nπ±π2,n∈Z
⇒y=1+(2n±1)π4,n∈Z
∴x=−1,y=1+(2n±1)π4,n∈Z