The correct option is A For b<0 there are no solution
∵∣∣x2−2x−3∣∣=b
(A) For b<0, ∣∣x2−2x−3∣∣<0
Impossible, there are no solution.
(B) For b=0, x2−2x−3=0
∴x=3,−1 there are two solutions.
(C) For 0<b<1
∴0<∣∣x2−2x−3∣∣<1
⇒0<x2−2x+3<1 and −1<x2−2x+3<0
⇒x∈(1−√5,−1)∪(3,1+√5) and x∈(−1,1−√3)∪(1+√3,3)
(D) For b=1
∴∣∣x2−2x−3∣∣=1⇒x2−2x−3=±1⇒x=1±√5 and x=1±√3
there are four solution
(E) For b>1 ∣∣x2−2x−3∣∣>1
∴x2−2x−3>1 and x2−2x−3<−1
⇒(x−1)2>5 and (x−1)2<3
∴x−1>√5 and x−1<−√5 and 1−√3<x1+√3
⇒ x∈(−∞,1−√5)∪(1+√5,∞) and x∈(1−√3,1+√3)