For the equation lx2+mx+n=0,l≠0. If α&β are roots of the equation m3+l2n+ln2=3lmn then
α=β2
α3=β
α+β=αβ
αβ=1
Explanation for correct option:
Step1.Finding roots of equation,
lx2+mx+n=0,l≠0
α&β are the are roots of the equation,
Sumoftheroots=-coefficientofxcoefficientofx2α+β=-ml
m=-l(α+β)
Productoftheroot=constantcoeffiecientofx2αβ=nln=lαβ
Step2. Substitute the values of m,n in given equation.
m3+l2n+ln2=3lmn
Put the value of m and n in the above equation
{-l(α+β)}3+l3αβ+l3α2β2=-3l3(α+β)αβ
⇒ (α+β)3-αβ-α2β2=3(α+β)αβ
⇒α3+β3+3(α+β)αβ-αβ-α2β2=3(α+β)αβ
⇒ α3+β3-αβ-α2β2=0
⇒ α3-αβ+β3-α2β2=0
⇒ α(α2-β)-β2(α2-β)=0
⇒ (α2-β)(α-β2)=0
⇒α2=βorα=β2
∴α=β2
Hence, option (A) is correct answer