The correct option is D The number of non negative integral solution, when x1≥2, x2≥4 will be 120
Here,x1+x2+x3≤13
Let x4≥0 be a dummy variable so that, we get
x1+x2+x3+x4=13
Number of non negative integral solution =13+4−1C4−1=16C3=560
Number of positive integral solution =13−1C4−1=12C3=220
Now, when x2≥3 let x2=X2+3
Number of non negative integral solution of
x1+x2+x3+x4=13
⇒x1+X2+3+x3+x4=13
⇒x1+X2+x3+x4=10
=10+4−1C4−1=13C3=286
When x1≥2, x2≥4 let x1=X1+2, x2=X2+4
Number of non negative integral solution of
x1+x2+x3+x4=13
⇒X1+2+X2+4+x3+x4=13
⇒X1+X2+x3+x4=7
=7+4−1C4−1=10C3=120