For the following equation form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y=ae3x+be−2x.
Given family is y=ae3x+be−2x. .....(i)
On differentiating w.r.t. x we get
dydx=addx(e3x)+bddx(e−2x)⇒dydx=ae3xddx(3x)+be−2xddx(−2x)⇒dydx=3ae3x−2be−2x ...(ii)
Again differentiating w.r.t. x, we get
d1ydx2=3ae3xddx(3x)−2be−2xddx(−2x)=9ae3x+4be−2x⇒d2ydx2=3(3ae3x)+4be−2x⇒d2ydx2=3(dydx+2be−2x)+4be−2x (∵dydx+2be−2x=3ae2x)⇒d2ydx2=3dydx+6be−2x+4be−2x⇒d2ydx2=3dydx+10be−2x ...(iii)
On multiplying Eq. (i) by 3 and then substracting from Eq. (ii), we get
dydx−3y=−2be−2x−3be−2x⇒3y−dydx=5be−2x⇒b=3y−dydx5e−2x ...(iv)
On putting the value of b in Eq. (iii), we get
d2ydx2=3dydx+103y−dydx5e−2x.e−2x⇒d2ydx2=3dydx+2(3y−dydx)⇒d2ydx2=3dydx+6y−2dydx⇒d2ydx2=dydx+6y⇒d2ydx2−dydx−6y=0
which is the required differential equation.