wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For the following equation form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.​

y=ae3x+be2x.

Open in App
Solution

Given family is y=ae3x+be2x. .....(i)
On differentiating w.r.t. x we get
dydx=addx(e3x)+bddx(e2x)dydx=ae3xddx(3x)+be2xddx(2x)dydx=3ae3x2be2x ...(ii)
Again differentiating w.r.t. x, we get
d1ydx2=3ae3xddx(3x)2be2xddx(2x)=9ae3x+4be2xd2ydx2=3(3ae3x)+4be2xd2ydx2=3(dydx+2be2x)+4be2x (dydx+2be2x=3ae2x)d2ydx2=3dydx+6be2x+4be2xd2ydx2=3dydx+10be2x ...(iii)
On multiplying Eq. (i) by 3 and then substracting from Eq. (ii), we get
dydx3y=2be2x3be2x3ydydx=5be2xb=3ydydx5e2x ...(iv)
On putting the value of b in Eq. (iii), we get
d2ydx2=3dydx+103ydydx5e2x.e2xd2ydx2=3dydx+2(3ydydx)d2ydx2=3dydx+6y2dydxd2ydx2=dydx+6yd2ydx2dydx6y=0
which is the required differential equation.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Area under the Curve
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon