For the following pairs of observations (1,10),(2,9),(3,9),(4,8),(5,6),(6,12),(7,4),(8,3),(9,13),(10,1), then Cov(x,y)=
1.05
2.45
–4.45
–4.9
Finding covariance of (x, y):
Given data (1,10),(2,9),(3,9),(4,8),(5,6),(6,12),(7,4),(8,3),(9,13),(10,1),
Here, x=1,2,3,4,5,6,7,8,9,10&y=10,9,8,7,6,5,4,3,2,1
Mean(x¯)=sumoftheobservationnumberofobservationx=1+2+3+4+5+6+7+8+9+1010=5.5similarly,y¯=5.5
x-x¯y-y¯(x-x¯)(y-y¯-4.52.5-11.25-3.51.5-5.25-2.51.5-3.75-1.50.5-0.75-0.5-1.50.750.54.52.251.5-3.5-5.252.5-4.5-11.253.55.519.254.5-6.5-29.25
Covariance(x,y)=∑(x–x¯)(y–y¯)nCov(x,y)=-44.510Cov(x,y)=-4.45
Hence, option (C) is correct answer.
Verify the following :
(i) 37×(56+1213)=(37×56)+(37×1213) (ii) −154×(37+−125)=(−154×37)+(−154×−125) (iii) (−83+−1312)×56=(−83×56)+(−1312×56) (iv) −167×(−89+−76)=(−167×−89)+(−167×−76)
Re-arrange suitably and find the sum in each of the following :
(i)1112+−173+112+−252
(ii)−67+−56+−49+−157
(iii)35+73+95+−1315+−73
(iv) 413+−58+−813+913
(v)23+−45+13+25
(vi) 18+512+27+712+97+−516