For the function f(x)=x100100+x9999+⋅⋅⋅+x22+x+1 Prove that f′(1)=100f′(0)
Open in App
Solution
The given function is f(x)=x100100+x9999+⋅⋅⋅+x22+x+1 ⇒f′(x)=x99+x98+⋅⋅⋅+x+1 ⇒f′(1)=199+198+⋅⋅⋅+1+1=[1+1+⋅⋅⋅+1+1]100terms=1×100=100 and f′(0)=1 Thus f′(1)=100×f1(0)