The correct option is C Local maxima of f=12
Given, f(x)=3x4+4x3−12x2+12
⇒ f′(x)=12x3+12x2−24x=12x(x−1)(x+2)
f′(x)=0 at x=0,1 and −2
⇒f′′(x)=36x2+24x−24=12(3x2+2x−2)
⇒f′′(0)=−24<0
⇒f′′(1)=36>0
⇒f′′(−2)=72>0
∴ By second deriavtive test, x=0 is a point of local maxima and local maximum value of f at x=0 is 12.
While x=1 and x=−2 are the points of local minimum,
⇒f(1)=7 and f(−2)=−20