The function f(x)=1x is continuous and differentiable on the interval [1,4]. Therefore, we can apply the LMVT
f(1)=1,f(4)=14
So, using LMVT:
f′(x)=−1x2
f′(c)=f(b)−f(a)b−a⇒−1c2=f(4)−f(1)4−1
⇒−1c2=14−13
⇒−1c2=−343
⇒c2=4⇒c=±2
We see that only one root c=2 belongs to the open interval (1,4).
∴c=2