Let f(x)=x100100+x9999+...+x22+x+1
Then,
f′(x)=ddx[x100100+x9999+...+x22+x+1]
=1100ddxx100+199⋅ddxx99+...+12ddxx2+ddx(x)+ddx(1)
=1100×100x99+199+99x98+...+12×2x+1+0
=x99+x98+...+x+1
Then, putting 1 and 0 in place of x.
f′(1)=(199+198+...+1)+1
=1+1+1+...+99 term+1
=99+1=100 and f′(0)=1
Hence, f′(1)=100
∵f′(1)=100f′(0) Hence Proved.