For the given differential equation find the general solution.
cos2dxdydx+y=tanx(0≤x<pi2)
Given, cos2dxdydx+y=tanx(0≤x<pi2)
On dividing by cos2x on both sides, we get
dydx+ysec2x=tanx sec2x
On comparing with the form dydx+Py=Q we get P=secx and Q=tanx
∴IF=e∫Pdx⇒e∫sec2xdx=IF=etanx ...(i)
The general solution of the given differential equation is given by
y.IF=∫Q×IFdx+C⇒yetanx=∫etanx.tanx sec2xdxPut tanx=t⇒sec2x=dtdx⇒dx=dtsec2x
∴yetanx=∫et.tsec2xdtsec2x⇒yetanx=∫et.tdx⇒yetanx=et.t−∫[ddt(t).∫etdt]dt⇒yetanx=et.t−∫etdt⇒yetanx=ett−et+C⇒yetanx=(tanx−1)etanx+C⇒y=tanx−1+Ce−tanx