wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For the given differential equation find the general solution.

cos2dxdydx+y=tanx(0x<pi2)

Open in App
Solution

Given, cos2dxdydx+y=tanx(0x<pi2)
On dividing by cos2x on both sides, we get
dydx+ysec2x=tanx sec2x
On comparing with the form dydx+Py=Q we get P=secx and Q=tanx
IF=ePdxesec2xdx=IF=etanx ...(i)
The general solution of the given differential equation is given by
y.IF=Q×IFdx+Cyetanx=etanx.tanx sec2xdxPut tanx=tsec2x=dtdxdx=dtsec2x
yetanx=et.tsec2xdtsec2xyetanx=et.tdxyetanx=et.t[ddt(t).etdt]dtyetanx=et.tetdtyetanx=ettet+Cyetanx=(tanx1)etanx+Cy=tanx1+Cetanx


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Equations Reducible to Standard Forms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon