wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For the given differential equation find the general solution.

dydx+2y=sinx

Open in App
Solution

The given differential equation is dy/dx+2y=sinx
Comparing with the form dy/dx +Py=Q
So, P=2 and Q=sinx. IF=ePdxe21dxIF=e2x
Hence, the solutions is given by
y.IF=Q×IFdx+Cy×e2x=sinx.e2xdx=I (say) ...(i)
I=sinxe2xdx[ddxsinxe2xdx]dx [Integration by parts]
I=sinxe2x212cosxe2xdxI=sinxe2x212cosxe2x2+12[ddxcosxe2xdx]dxI=sinxe2x214cosxe2x+14(sinx)e2xdxI=sinxe2x214cosxe2x14I+C5I4=e2x4(2sinxcosx)+CI=e2x5(2sinxcosx)+C
Therefore, Eq. (i) becomes
y×e2x=e2x5[2sinxcosx]+Cy=15[2sinxcosx]+e2xC


flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon