For the given differential equation find the general solution.
dydx+3y=e−2x
Given, dydx+3y=e−2x
On comparing with the form dydx+Py=Q we get P=3 and Q=e−2x
∴IF=e∫Pdx⇒e∫3dx⇒IF=e3x
The solution of the given differential equation is given by
y.IF=∫Q×IFdx+C⇒y×e3x=∫e−2x.e3xdx+C⇒ye3x=∫exdx+C⇒ye3x=ex+C⇒y=e−2x+Ce−3x