For the given differential equation find the general solution.
xdydx+2y=x2logx
Given, xdydx+2y=x2logx
On dividing by x on both sides, we get dydx+2yx=xlogx
On comparing with the from dydx+Py=Q, we get
P=2x and Q=xlogx
∴IF=e∫Pdx⇒e2∫1xdx=IF=e2log|x|=x2
The general solution of the given differential equation is given by
y.IF=∫Q×IFdx+C⇒x2y=∫x2.xlogxdx+C⇒x2y=∫x3 logx dx+C⇒x2y=logx.∫x3−∫[ddxlogx∫x3dx]dx+C⇒x2y=logx.x44−∫[ddxlogx∫x3dx]dx+C⇒x2y=logx.x44−∫[1x×x44]dx+C⇒x2y=logx.x44−∫x34dx+C⇒x2y=x44logx−x416+C⇒y=x216(4logx−1)+Cx−2