For the given differential equation find the general solution.
x logx dydx+y=2x logx
Given, x logx dydx+y=2x logx
On dividing by x~logx, on both sides, we get dydx+yx logx=2x2
On comparing with the form dydx+Py=Q, we get P=1x logx and Q=2x2
∴IF=e∫pdx=e∫1dx xlogxLet logx=t⇒1x=dtdx⇒dx=xdt∴IF=e∫1tdt=elog|t|=t=logx [∵t=logx]
The general solution of the given differential equation is given by,
y.IF=∫QIFdx+C⇒y.logx=∫2x2logxdx+C⇒ylogx=2∫(logx.1x2)dx+C=2[logx∫1x2dx−∫(ddx(logx)∫1x2dx)dx]+C=2[logx(−1x−∫{1x.(−1x)}dx)]+C=2[−logxx+∫1x2dx]+C=2[−logxx−1x]+C⇒y logx=−2x(1+logx)+C