For the given differential equation find the general solution.
(x+y)dydx=1
(x+y)dydx=1⇒dxdy=(x+y)⇒dxdy−x=y
On comparing with the form dxdy+Px=Q, we get
P=-1, Q=y
∴IF=e∫Pdy=e−∫1dy⇒IF=e−y ....(i)
The general solution of the given differential equations is given by the relation,
x.IF=∫Q×IFdy+C⇒x.e−y=∫e−y.ydy+C⇒xe−y=y∫e−ydy−∫[ddyy∫e−ydy]dy+C⇒xe−y=−y(e−y)+∫e−ydy+C⇒xe−y=−ye−y−e−y+C⇒x=−y−1+eyC⇒x+y+1=Cey.