For the given differential equation find the particular solution satisfying the given conditions.
2xy+y2−2x2dydx=0, y=2 when x=1
Given, 2x2dydx=2xy+y2⇒dydx=2xy+y22x2 ...(i)
Thus, the given differential equation is homogeneous.
So, put yx=v i.e.,y=vx⇒dvdx=v+xdvdx
Then, Eq. (i) becomes v+xdvdx=2x2v+x2v22x2⇒v+xdydx=x2(2v+v2)2x2⇒v+xdvdx=v+12v2⇒xdvdx=12v2⇒2v2dv=1xdx
On integrating both sides, we get
2∫v−2dv=∫dxx⇒2(v−2+1−2+1)=log|x|+C⇒2(v−1−1)=log|x|+C⇒−2v=log|x|+C⇒−2xy=log|x|+C (∵v=yx)...(ii)
When x=1, then y=2, therefore −2×12=log1+C⇒−1=0+C
On, putting the value of C in Eq. (ii), we get
−2xy=log|x|−1⇒y=2x1−log|x|