For the given differential equation find the particular solution satisfying the given conditions.
x2dy+(xy+y2)dx=0, y=1 when x=1
Given, x2dy=−(xy+y2)dx⇒dydx=−xy+x2x2
Thus, the given differential equations is homogeneous.
So, put yx=v i.e., y=vx⇒dydx=v+xdvdx
Then, Eq. (i) becomes v+xdvdx=−x2v+x2v2x2⇒v+xdvdx=−x2(v+v2)x2⇒v+xdvdx=−(v+v2)⇒xdvdx=−2(2v+v2)⇒dvv2+2v=−1xdx
On integrating both sides, we get ∫dvv2+2v=−∫dxxLet v+1=t⇒dv=dt∴∫1t2−1dt=−∫dxx⇒12log∣∣t−1t+1∣∣=−log|x|+C [∵∫dxx2−a2=12alog∣∣x−ax+a+C∣∣]⇒12log∣∣v+1−1v+1+1∣∣=−log|x|+logC [∵t=v+1]
⇒12log∣∣vv+2∣∣+2log|x|=2logC⇒log∣∣(vv+2)x2∣∣=logC2⇒log∣∣∣(yxyx+2)x2∣∣∣=logC2(put v=yx)⇒x2y2x+y=A ...(ii)
[let C2=A and logm=logn⇒m=n]
When x=1, y=1
∴12+1=A⇒A=13
On putting the value of A in Eq. (ii), we get
x2y2x+y=13⇒3x2y=2x+y
This is the required solution of the given differential equation.