The correct options are
A centre is (1,2)
B eccentricity is 45
C end points of latus-rectum are (5,195) and (5,15)
D length of major axis will be 10 units
9x2+25y2−18x−100y−116=0
⇒9(x2−2x)+25(y2−4y)=116
⇒9(x2−2x+1)+25(y2−4y+4)=116+100+9
⇒9(x−1)2+25(y−2)2=225
⇒(x−1)225+(y−2)29=1
Hence centre will be (1,2)
Comparing it with X2a2+Y2b2=1, we get a=5 and b=3
Here a>b, so the major and the minor axes of the ellipse are parallel to x−axis and y−axis, respectively.
∴e=√1−b2a2
⇒e=√1−925
⇒e=45
end points of latus-rectum will be
(1+ae,2±b2a)≡(5,195),(5,15)