The correct option is D The number of non-negative integral solutions, when x1≥2,x2≥4 is 120
x1+x2+x3≤13
Let x4≥0 be a dummy variable so that,
x1+x2+x3+x4=13 ⋯(i)
Number of non-negative integral solutions =13+4−1C4−1=16C3=560
For positive integral solutions
x1≥1, x2≥1, x3≥1
Let x1=X1+1, x2=X2+1, x3=X3+1
From (i),
X1+X2+X3+x4=10, where X1,X2,X3≥0
Number of positive integral solutions
=10+4−1C4−1=13C3=286
Now, when x2≥3
let x2=X2+3
x1+x2+x3+x4=13
x1+X2+3+x3+x4=13, where X2≥0
⇒x1+X2+x3+x4=10
Number of non-negative integral solutions =10+4−1C4−1=13C3=286
When x1≥2, x2≥4
let x1=X1+2, x2=X2+4
x1+x2+x3+x4=13
⇒X1+2+X2+4+x3+x4=13, where X1,X2≥0
⇒X1+X2+x3+x4=7
Number of non-negative integral solutions
=7+4−1C4−1=10C3=120