1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration by Partial Fractions
For the matri...
Question
For the matrix
A
=
1
1
1
1
2
-
3
2
-
1
3
. Show that
A
-
3
-
6
A
2
+
5
A
+
11
I
3
=
O
. Hence, find A
−1
.
Open in App
Solution
A
=
1
1
1
1
2
-
3
2
-
1
3
⇒
A
=
1
1
1
1
2
-
3
2
-
1
3
=
1
×
3
-
1
×
9
+
1
×
-
5
=
3
-
9
-
5
=
-
11
Since
,
A
≠
0
Hence
,
A
-
1
exists
.
Now
,
A
2
=
1
1
1
1
2
-
3
2
-
1
3
1
1
1
1
2
-
3
2
-
1
3
=
1
+
1
+
2
1
+
2
-
1
1
-
3
+
3
1
+
2
-
6
1
+
4
+
3
1
-
6
-
9
2
-
1
+
6
2
-
2
-
3
2
+
3
+
9
=
4
2
1
-
3
8
-
14
7
-
3
14
and
A
3
=
A
2
.
A
=
4
2
1
-
3
8
-
14
7
-
3
14
1
1
1
1
2
-
3
2
-
1
3
=
4
+
2
+
2
4
+
4
-
1
4
-
6
+
3
-
3
+
8
-
28
-
3
+
16
+
14
-
3
-
24
-
42
7
-
3
+
28
7
-
6
-
14
7
+
9
+
42
=
8
7
1
-
23
27
-
69
32
-
13
58
Now
,
A
3
-
6
A
2
+
5
A
+
11
I
3
=
8
7
1
-
23
27
-
69
32
-
13
58
-
6
4
2
1
-
3
8
-
14
7
-
3
14
+
5
1
1
1
1
2
-
3
2
-
1
3
+
11
1
0
0
0
1
0
0
0
1
=
8
-
24
+
5
+
11
7
-
12
+
5
+
0
1
-
6
+
5
+
0
-
23
+
18
+
5
+
0
27
-
48
+
10
+
11
-
69
+
84
-
15
+
0
32
-
42
+
10
+
0
-
13
+
18
-
5
+
0
58
-
84
+
15
+
11
=
0
0
0
0
0
0
0
0
0
=
O
(
Null
matrix
)
Again
,
A
3
-
6
A
2
+
5
A
+
11
I
3
=
O
⇒
A
-
1
×
A
3
-
6
A
2
+
5
A
+
11
I
3
=
A
-
1
×
O
(
Pre
-
multiplying
both
sides
because
A
-
1
exists
)
⇒
A
2
-
6
A
+
5
I
3
+
11
A
-
1
=
0
⇒
4
2
1
-
3
8
-
14
7
-
3
14
-
6
1
1
1
1
2
-
3
2
-
1
3
+
5
1
0
0
0
1
0
0
0
1
=
-
11
A
-
1
⇒
4
-
6
+
5
2
-
6
+
0
1
-
6
+
0
-
3
-
6
+
0
8
-
12
+
5
-
14
+
18
+
0
7
-
12
+
0
-
3
+
6
+
0
14
-
18
+
5
=
-
11
A
-
1
⇒
A
-
1
=
-
1
11
3
-
4
-
5
-
9
1
4
-
5
3
1
Suggest Corrections
0
Similar questions
Q.
For the matrix show that A 3 − 6 A 2 + 5 A + 11 I = O. Hence, find A −1.
Q.
For the matrix
A
=
⎡
⎢
⎣
1
1
1
1
2
−
3
2
−
1
3
⎤
⎥
⎦
,
show that
A
3
−
6
A
2
+
5
A
+
11
I
=
0
. Hence find
A
−
1
Q.
For the matrix
show that
A
3
ā 6
A
2
+ 5
A
+ 11
I
= O. Hence, find
A
ā1.