wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For the matrix A=11112-32-13. Show that A-3-6A2+5A+11 I3=O. Hence, find A−1.

Open in App
Solution

A=1 1 11 2 -32 -1 3 A=1 1 11 2 -32 -1 3=1×3-1×9+1×-5=3-9-5=-11 Since, A0Hence, A-1 exists.Now,A2=1 1 11 2 -32 -1 31 1 11 2 -32 -1 3=1+1+2 1+2-1 1-3+31+2-6 1+4+3 1-6-92-1+6 2-2-3 2+3+9 = 4 2 1-3 8 -14 7 -3 14and A3 =A2.A=4 2 1-3 8 -147 -3 141 1 11 2 -32 -1 3 = 4+2+2 4+4-1 4-6+3-3+8-28 -3+16+14 -3-24-42 7-3+28 7-6-14 7+9+42= 8 7 1-23 27 -69 32 -13 58Now, A3 -6A2+5A+11I3= 8 7 1-23 27 -69 32 -13 58-6 4 2 1-3 8 -147 -3 14+5 1 1 11 2 -32 -1 3+11 1 0 00 1 00 0 1 = 8-24+5+11 7-12+5+0 1-6+5+0-23+18+5+0 27-48+10+11 -69+84-15+0 32-42+10+0 -13+18-5+0 58-84+15+11 = 0 0 00 0 00 0 0 =O (Null matrix)Again, A3 -6A2+5A+11I3 =OA-1×A3 -6A2+5A+11I3 =A-1×O (Pre-multiplying both sides because A-1 exists) A2 -6A+5I3+11A-1 =0 4 2 1-3 8 -14 7 -3 14 -61 1 11 2 -32 -1 3 +51 0 00 1 00 0 1 =-11A-1 4-6+5 2-6+0 1-6+0-3-6+0 8-12+5 -14+18+0 7-12+0 -3+6+0 14-18+5 =-11A-1A-1 = - 111 3 -4 -5-9 1 4-5 3 1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon