wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For the matrix A=111123213, show that A36A2+5A+11I=0. Hence find A1

Open in App
Solution

A=111123213

To Prove : A36A2+5A+11I=O

Consider, A2=111123213111123213

=1+1+21+2113+31+261+4+316921+62232+3+9

A2=42138147314

Now, A3=A2A
=42138147314111123213

=4+2+24+4146+33+8283+16+143244273+2876147+9+42

A3=871232769321358

Consider, A36A2+5A+11I

=871232769321358642138147314+5111123213+11100010001

=87123276932135824126184884421884+5555101510515+110001100011

=824+5+11712+516+523+18+52748+10+1169+84153242+1013+1855884+15+11

=000000000
A36A2+5A+11I=O .....(1)

A1 :
Multiplying eqn (1) by A1, we get
A3A16A2A1+5AA1+11IA1=OA1
A26A+5I+11A1=O
11A1=A2+6A5I
Substituting the values in above eqn
11A1=42138147314+61111232135100010001

=42138147314+6666121812618500050005

11A1=4+652+61+63+68+12514187+123614+185

A1=111345914531

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebraic Operations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon