A=⎡⎢⎣11112−32−13⎤⎥⎦
To Prove : A3−6A2+5A+11I=O
Consider, A2=⎡⎢⎣11112−32−13⎤⎥⎦⎡⎢⎣11112−32−13⎤⎥⎦
=⎡⎢⎣1+1+21+2−11−3+31+2−61+4+31−6−92−1+62−2−32+3+9⎤⎥⎦
⇒A2=⎡⎢⎣421−38−147−314⎤⎥⎦
Now, A3=A2A
=⎡⎢⎣421−38−147−314⎤⎥⎦⎡⎢⎣11112−32−13⎤⎥⎦
=⎡⎢⎣4+2+24+4−14−6+3−3+8−28−3+16+14−3−24−427−3+287−6−147+9+42⎤⎥⎦
A3=⎡⎢⎣871−2327−6932−1358⎤⎥⎦
Consider, A3−6A2+5A+11I
=⎡⎢⎣871−2327−6932−1358⎤⎥⎦−6⎡⎢⎣421−38−147−314⎤⎥⎦+5⎡⎢⎣11112−32−13⎤⎥⎦+11⎡⎢⎣100010001⎤⎥⎦
=⎡⎢⎣871−2327−6932−1358⎤⎥⎦−⎡⎢⎣24126−1848−8442−1884⎤⎥⎦+⎡⎢⎣555510−1510−515⎤⎥⎦+⎡⎢⎣110001100011⎤⎥⎦
=⎡⎢⎣8−24+5+117−12+51−6+5−23+18+527−48+10+11−69+84−1532−42+10−13+18−558−84+15+11⎤⎥⎦
=⎡⎢⎣000000000⎤⎥⎦
⇒A3−6A2+5A+11I=O .....(1)
A−1 :
Multiplying eqn (1) by A−1, we get
A3A−1−6A2A−1+5AA−1+11IA−1=OA−1
⇒A2−6A+5I+11A−1=O
⇒11A−1=−A2+6A−5I
Substituting the values in above eqn
11A−1=−⎡⎢⎣421−38−147−314⎤⎥⎦+6⎡⎢⎣11112−32−13⎤⎥⎦−5⎡⎢⎣100010001⎤⎥⎦
=⎡⎢⎣−4−2−13−814−73−14⎤⎥⎦+⎡⎢⎣666612−1812−618⎤⎥⎦−⎡⎢⎣500050005⎤⎥⎦
11A−1=⎡⎢⎣−4+6−5−2+6−1+63+6−8+12−514−18−7+123−6−14+18−5⎤⎥⎦
⇒A−1=111⎡⎢⎣−3459−1−45−3−1⎤⎥⎦