wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For the matrix A=111123213 show that A36A2+5A+11I=0. Hence find A1.

Open in App
Solution

Given: A=111123213
A2=111123213111123213
A2=1+1+21+2113+31+261+4+316921+62232+3+9
A2=42138147314
A3=A2×A=42138147314111123213
=4+2+24+4146+33+8283+16+143244273+2876147+9+42
A3=871232769321358
Now, proving A36A2+5A+11I=0
Solving L.H.S.
A36A2+5A+11I
=871232769321358642138147314+5111123213+11100010001
=87123276932135824126184884421884+5555101510515+110001100011
L.H.S.=242412126623+2348+48848442+4218188484
L.H.S.=000000000=0
L.H.S.=R.H.S.
Hence proved.
Now,
A36A2+5A+11I=0
Multiplying A1 both sides
(A36A2+5A+11I)A1=0A1
A3A16A2A1+5AA1+11IA1=0
A2AA16AAA1+5AA1+11IA1=0
A2I6AI+5I+11IA1=0 (AA1=1)
A26A+5I+11A1=0 (AI=A)
11A1=A2+6A5I
A1=111(A2+6A5I)
A1=11142138147314+6666121812618500050005
A1=111345914531

flag
Suggest Corrections
thumbs-up
42
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon