For the matrix, A=[1567], verify that
(i) (A+A') is a symmetric matrix.
(ii) (A-A') is a skew-symmetric matrix.
Here, A+A′=[1567]+[1567]′=[1567]+[1657]=[2111114]A+A′=[2111114]and(A+A′)′=[2111114]
[∵A′=A, then A is a symmetric matrix]
Hence, (A+A')is a symmetric matrix.
A−A′=[1567]′=[1567]−[1657]=[0−110]⇒A−A′=[0−110]and(A−A′)′=[01−10]=−[0−110]=(A−A′)
[∵A′=−A, then A is a skew -symmetric matrix]
Hence, (A-A')is a skew -symmetric matrix.