For the matrix A=[3211], find the numbers a and b such that A1+aA+bI=0
Given A=[3211],
A2=AA=[3211][3211]=[9+26+23+12+1]=[11843]
Given A2+aA+bI=0
On putting the values of A2,A and I, we get
[11843]+a[3211]+b[1001]=0⇒[11+2a+b8+2a+04+a+03+a+b]=0
⇒[11+3a+b8+2a4+a3+a+b]=[0000]
If two matrices are equal, then their corresponding elements are equal.
⇒11+3a+b=0 …(i)8+2a=0 …(ii) 4+a=0 …(iii)and 3+a+b=0 …(iv)
Solving Eqs. (iii) and (iv), we get
4+a=0⇒a=−4
and 3+a+b=0⇒3−4+b=0⇒b=1
Thus, a=−4 and b=1