The correct option is C −4,1
A2=[11843]
Now,
A2+aA+bI=0
Putting values
[11843]+a[3211]+b[1001]=0
[11843]+[3a2aaa]+[b00b]=0
[11+3a+b8+2a+04+a+03+a+b]=0
[3a+b+112a+84+aa+b+3]=[0000]
Since the matrices are equal,
Comparing corresponding elements
4+a=0…(1)
a+b+3=0…(2)
Solving (1) and (2)
a=−4⇒b=1