Given matrix is,
A=[ 3 2 1 1 ]
The value of A 2 is,
A 2 =[ 3 2 1 1 ][ 3 2 1 1 ] =[ 9+2 6+2 3+1 2+1 ] =[ 11 8 4 3 ]
Put the values of A and A 2 in A 2 +aA+bI=0
[ 11 8 4 3 ]+a[ 3 2 1 1 ]+b[ 1 0 0 1 ]=[ 0 0 0 0 ] [ 11 8 4 3 ]+[ 3a 2a a a ]+[ b 0 0 b ]=[ 0 0 0 0 ] [ 11+3a+b 8+2a 4+a 3+a+b ]=[ 0 0 0 0 ]
Comparing both sides, we get,
3a+b+11=0(1)
2a+8=0(2)
a+4=0(3)
3+a+b=0(4)
From equation (2)
2a+8=0 a=−4
Substitute the value a in equation (4), we get,
−4+b+3=0 b=1
Thus a=−4 and b=1.
For the matrix, find the numbers a and b such that A2 + aA + bI = O.