(i)
Matrix A is defined as,
A=[ 1 5 6 7 ]
Now, the transpose of the given matrix is,
A ′ =[ 1 6 5 7 ]
Substitute the values in A+ A ′ .
A+ A ′ =[ 1 5 6 7 ]+[ 1 6 5 7 ] =[ 2 11 11 14 ]
For a symmetric matrix, A= A ′ .
So the transpose of A+ A ′ is,
( A+ A ′ ) ′ =[ 2 11 11 14 ] =A+ A ′
Hence, ( A+ A ′ ) is a symmetric matrix.
(ii)
Matrix A is defined as,
A=[ 1 5 6 7 ]
Now, the transpose of the given matrix is,
A ′ =[ 1 6 5 7 ]
Substitute the values in A− A ′ .
A− A ′ =[ 1 5 6 7 ]−[ 1 6 5 7 ] =[ 0 −1 1 0 ]
For a skew-symmetric matrix, A=− A ′ .
So the transpose of A− A ′ is,
( A− A ′ ) ′ =[ 0 1 −1 0 ] =−[ 0 −1 1 0 ] =−( A− A ′ )
Hence, ( A− A ′ ) is a skew-symmetric matrix.