Given (θ1,θ2,θ3....θn)∈(θ,π2)
⇒ ln(secθ1−tanθ1)+ln(secθ2−tanθ2)+....+ln(secθn−tanθn)+lnπ=o....(1)
using property of log we can write
⇒ ln[(secθ1−tanθ1)(secθ2−tanθ2)....(secθn−tanθn)]=−lnπ
⇒ on dividing each term by it conjucate and multiply we get
⇒ ln[(sec2θ1−tan2θ1)(sec2θ2−tan2θ2).....(sec2θn−tan2θn)(secθ1+tanθ1)(secθ2+tanθ2)......=−lnπ(secθn+tanθn)]
⇒ [∵sec2θ−tan2θ=1]
⇒ ln[1(secθ1+tanθ1)(secθ2−tanθ2)....(secθn−tanθn)]=−lnπ
on comparing LHS & RHS we get
⇒ (secθ1+tanθ1)(secθ2+tanθ2)....(secθn+tanθn)=π(A)
noe we have to find
cos[(secθ1+tanθ1)(secθ2+tanθ2)....(secθn+tanθn)]
from equation (1)
cos[(secθ1+tanθ1).......(secθ2+tanθ2)]=[cosπ=−1]