wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For (θ1,θ2,θ3,......θn)ϵ(0,π/2) if ln(secθ1tanθ1)+ln(secθ2tanθ2)+....ln(secθtanθn)+lnπ=0 then find the value of cos[(secθ1+tanθ1)(secθ2+tanθ2).....(secθn+tanθn)]

Open in App
Solution

Given (θ1,θ2,θ3....θn)(θ,π2)
ln(secθ1tanθ1)+ln(secθ2tanθ2)+....+ln(secθntanθn)+lnπ=o....(1)
using property of log we can write
ln[(secθ1tanθ1)(secθ2tanθ2)....(secθntanθn)]=lnπ
on dividing each term by it conjucate and multiply we get
ln[(sec2θ1tan2θ1)(sec2θ2tan2θ2).....(sec2θntan2θn)(secθ1+tanθ1)(secθ2+tanθ2)......=lnπ(secθn+tanθn)]
[sec2θtan2θ=1]
ln[1(secθ1+tanθ1)(secθ2tanθ2)....(secθntanθn)]=lnπ
on comparing LHS & RHS we get
(secθ1+tanθ1)(secθ2+tanθ2)....(secθn+tanθn)=π(A)
noe we have to find
cos[(secθ1+tanθ1)(secθ2+tanθ2)....(secθn+tanθn)]
from equation (1)
cos[(secθ1+tanθ1).......(secθ2+tanθ2)]=[cosπ=1]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon