Construction: Draw AD perpendicular to BC and PS perpendicular to QR
As ΔABC∼ΔPQR
So ABPQ=BCQR=CARP (1)
Also ∠A=∠P , ∠B=∠Q , ∠C=∠R (2)
Now consider ΔABD and ΔPQS
∠B=∠Q (from (2))
∠ADB=∠PSQ=90∘ (by construction)
So by AA similarity ΔABD∼ΔPQS
Therefore ABPQ=BDQS=DASP (3)
area(ΔABC)=12×AD×BC (4)
area(ΔPQR)=12×PS×QR (5)
Dividing (4) by (5)
area(ΔABC)area(ΔPQR)=12×AD×BC12×PS×QR (6)
From (1) and (3)
DASP=BCQR (7)
Substituting (7) in (6)
area(ΔABC)area(ΔPQR)=12×BC×BC12×QR×QR=(BC)2(QR)2
From (1)
area(ΔABC)area(ΔPQR)=(BC)2(QR)2=(AB)2(PQ)2=(AC)2(PR)2
Hence proved