Length of sub tangent PQ=2at2
Length of subnormal MN=2a
Length of normal PN=2a√1+t2
(1) Length of sub tangent = length of normal
2at2=2a√1+t2t2=√1+t2t4=1+t2t4−t2−1=0
using quadratic formula
t2=1±√1−4(1)(−1)2t2=1±√52⇒t2=1+√52t=√1+√52
Point of contact is (at2,2at)
⇒⎛⎝a1+√52,2a√1+√52⎞⎠⇒(a+a√52,a√2+2√5)
(2) normal = difference between sub tangent and su normal
y2=4ax(at2,2at)
Given : 2a√1+t2=2at2−2a
√1+t2=t2−11+t2=t4+1−2t2t4−3t2=0t2(t2−3)=0t2−3=0t2=3⇒t=√3
Point of contact is (at2,2at)
⇒(3a,2√3a)