y=x+1a+x2 not contain value in [0,1]
⇒ay+x2y=x+1
⇒yx2+x+ay+1=0
Discriminant must be greater or equal to zero,
D≡12−4(ay+1)(y)≥0
⇒1−4ay2−4y≥0
⇒4ay2+4y−1≤0
⇒y−(−12a±12a√a+1)≤0
⇒y∈[−12a−12a√a+1,−12a+12a√a+1] -Equation 1
For the condition stated in question,
−−12a−√a+12a>1
⇒a+1<4a2−4a+1(On squaring)
⇒4a2−3a>0
⇒a(a−34)>0
a∈(−∞,0)∪(34,∞) -Equation 2
Or −12a+√a+12a<0
⇒a+1<4a2(On squaring)
⇒4a2−a−1>0
⇒(a−1+√178)(a−1−√178)>0
a∈(−∞,1−√178)∪(1+√178,∞) -Equation 3
Also, for definition of √a+1,a≥−1⇒a∈[−1,∞) - Equation 4
From, Equation 2,3 & 4
a∈[−1,0)∪(1+√178,∞)