y=x−1a−x2+1
For range,
⇒−yx2+ay+y=x−1
⇒yx2−ay−y+x−1=0
D≡12−4(y)(−1)(ay+y+1)≥0(for real values)
⇒1+4ay2+4y2+4y≥0
⇒4(a+1)y2+4y+1≥0
⇒(y−−4±√16−16(a+1)22(4)(a+1)≥0
⇒(y−−1±√1−a2−1−2a2(a+1))≥0
⇒(y−−1±√−a2−2a2(a+1))≥0
⇒y∈(−∞,−1−√−a2−2a2(a+1)]∪[−1−√−a2−2a2(a+1))
For, not belonging to [−1,−13],
−1−√−a2−2a2(a+1)<−1
⇒−1−√−a2−2a<−2(a+1)
⇒−a2−2a>(2(a+1)−1)2 (On squaring both sides)
⇒4a2+8a+4−4a−4+1+a2+2a<0
⇒5a2+6a+1<0
⇒(a+15)(a+1)<0
⇒a∈(−1,−15)
−1−√−a2−2a2(a+1))>−13
⇒3√−a2−2a>−2(a+1)+3
⇒9(−a2−2a)>9+4a2+8a=4−12a−12
⇒13a2+14a+1<0
⇒(a+113)(a+1)<0
a∈(−1,−113) Equation 2
From equation 1& 2, a∈(−1,−15)