For what value of k are the points A(k, 2 – 2k) ,B(–k + 1, 2k) and C(–4 – k, 6 – 2k) are collinear ? [4 MARKS]
Formula: 1 Mark
Calculations: 2 Marks
Answer: 1 Mark
For points A,B,C to be collinear, area of triangle ABC formed by these points should be zero.
⇒ The area of ΔABC=0
⇒12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]=0
⇒12[k(2k−6+2k)+(–k+1)(6–2k−2+2k)+(–4–k)(2–2k−2k)]=0
⇒12[k(4k−6)+(–k+1)(4)+(–4–k)(2–4k)]=0
⇒12[4k2−6k−4k+4−8+16k−2k+4k2]=0
⇒8k2+4k−4=0
⇒8k2+4k−4=0
⇒2k2+k−1=0
⇒(k+1)(2k−1)=0
⇒k=−1 or k=12